Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(27): 36326-36343, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33694112

RESUMO

The effect of the incorporation of mineralizing Bacillus spp. on the characteristics of fluorescent organic matter (FDOM) in a recirculating aquaculture system (Nile tilapia-Stevia rebaudiana) was evaluated. EEM-PARAFAC analysis was used to determine the composition of the dissolved organic matter and to study its relationship with nitrogen transformation. The composition and antioxidant activity of Stevia leaves were used as indicators of the benefits of bacterial supplementation on nutrient absorption. Two systems were used, each consisting of a circular fish tank (1.7 m3) and six units of the nutrient film (0.18 m3). One system was supplemented with bacteria (BS), while the other was used as control (NBS). The inclusion of Bacillus spp. facilitated mineralization and the availability of total phosphorus (TP), K+, and nitrogen, and also controlled the total ammonia nitrogen (TAN) for 56 days without water exchange. FDOM was modeled by four components (3-humic-like, 1-protein-like), which were good indicators of the process of mineralization. The fluorescence intensity in the biofilter was significantly correlated with TP, K+, temperature, and the absorption coefficient a254. The fluorescence index (FI) was a good indicator of the process of nitrification. Plants from BS required 46.4% less NO3- and 47.8% less K+ compared to the control, and absorbed 45.1% more TP. BS-Stevia leaves produced 38.6% more reducing sugars, 28.6% more flavonoids, and 35.9% more glycosylated flavonoids than the control. The fish in the BS system reached a higher final weight than NBS, resulting in a 1 kg/m3 higher gross yield. Even so, it will be necessary to reduce the pH of the water to increase the antioxidant scavenging capacity of the plants.


Assuntos
Bacillus , Stevia , Animais , Nitrogênio , Fósforo , Compostos Fitoquímicos
2.
High Throughput ; 7(3)2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181439

RESUMO

The present study aimed at determining the histamine production capacity of Gram (+) and Gram (-) bacteria isolated from Octopus maya, along with identifying the presence of amino acid decarboxylase genes. Of the total 80 psychrotrophic microorganisms, 32 strains were identified as histamine-forming bacteria. The recombinant DNA technique was used for genotypic identification of histidine (hdc), ornithine (odc), and lysine decarboxylases (ldc) genes. Thirty-two strains were able to produce 60⁻100 ppm in trypticase soy broth with 1.0% l-histidine after 6 h at 20 °C. NR6B showed 98% homology with Hafnia alvei. NR73 represented 18.8% of the total isolates and showed 98% homology with Enterobacter xianfengensis and Enterobacter cloacae. NR6A represented 6% of the total isolates, which were identified as Lactococcus sp. The hdc gen from NR6B showed 100% identity with hdc from Morganella morganii; ldc showed 97.7% identity with ldc from Citrobacter freundii. The Odc gene was detected only in NR73 and showed 100% identity with Enterobacter sp. All the isolated were identified as weak histamine⁻former. The ingestion of a food containing small amounts of histamine has little effect on humans; however, the formation of biogenic amines is often considered as an indicator of hygienic quality; this emphasizes the importance of improving good management practices and storage.

3.
Braz. j. microbiol ; 49(1): 104-111, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889207

RESUMO

ABSTRACT Despite the increasing reports on the incidence of fresh vegetables and fruits as a possible vehicle for human pathogens, there is currently limited knowledge on the growth potential of Escherichia coli O157:H7 on different plant substrates. This study analyzed the selective adhesion and growth of E. coli O157:H7 on chili habanero (Capsicum chinense L.), cucumber (Cucumis sativus), radish (Raphanus sativus), tomato (Lycopersicon esculentum), beet (Beta vulgaris subsp. vulgaris), and onion (Allium cepa L.) under laboratory conditions. The Gompertz parameters were used to determine the growth kinetics. Scanning electron microscopy was used to visualize the adhesion of E. coli O157:H7 on the epicarp of the samples. Predictive models were constructed to compare the growth of E. coli O157:H7 on the samples with different intrinsic factors and to demonstrate the low selectivity of the pathogen. No significant difference was observed in the lag-phase duration (LPD), generation time (GT), and exponential growth rate (EGR) of the pathogen adhered to the samples. The interaction between the microorganism and the substrate was less supportive to the growth of E. coli O157:H7 for onion, whereas for tomato and cucumber, the time for the microorganism to attain the maximum growth rate (M) was significantly longer than that recorded for other samples.


Assuntos
Verduras/microbiologia , Escherichia coli O157/crescimento & desenvolvimento , Frutas/microbiologia , Capsicum/microbiologia , Cinética , Contaminação de Alimentos/análise , Solanum lycopersicum/microbiologia , Cucumis sativus/microbiologia , Escherichia coli O157/isolamento & purificação , Escherichia coli O157/genética , Escherichia coli O157/química , Cebolas/microbiologia , Beta vulgaris/microbiologia
4.
Braz J Microbiol ; 49(1): 104-111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29037503

RESUMO

Despite the increasing reports on the incidence of fresh vegetables and fruits as a possible vehicle for human pathogens, there is currently limited knowledge on the growth potential of Escherichia coli O157:H7 on different plant substrates. This study analyzed the selective adhesion and growth of E. coli O157:H7 on chili habanero (Capsicum chinense L.), cucumber (Cucumis sativus), radish (Raphanus sativus), tomato (Lycopersicon esculentum), beet (Beta vulgaris subsp. vulgaris), and onion (Allium cepa L.) under laboratory conditions. The Gompertz parameters were used to determine the growth kinetics. Scanning electron microscopy was used to visualize the adhesion of E. coli O157:H7 on the epicarp of the samples. Predictive models were constructed to compare the growth of E. coli O157:H7 on the samples with different intrinsic factors and to demonstrate the low selectivity of the pathogen. No significant difference was observed in the lag-phase duration (LPD), generation time (GT), and exponential growth rate (EGR) of the pathogen adhered to the samples. The interaction between the microorganism and the substrate was less supportive to the growth of E. coli O157:H7 for onion, whereas for tomato and cucumber, the time for the microorganism to attain the maximum growth rate (M) was significantly longer than that recorded for other samples.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Frutas/microbiologia , Verduras/microbiologia , Beta vulgaris/microbiologia , Capsicum/microbiologia , Cucumis sativus/microbiologia , Escherichia coli O157/química , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , Contaminação de Alimentos/análise , Cinética , Solanum lycopersicum/microbiologia , Cebolas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...